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Abstract 

Classical digital geometry deals with sets of cubical voxels (or square pixels) that can share 
faces, edges, or vertices; but basic parts of digital geometry can be generalized to sets S of 
convex voxels (or pixels) that can have arbitrary intersections. In particular, it can be shown 
that if each voxel P of S has only finitely many neightbors (voxels of S that intersect P), and 
if any nonempty intersection of neighbors of P intersects P, then the neighborhood N(P) of 
every voxel P is simply connected, and if the topology of N(P) does not change when P is 
deleted (i.e., P is a "simple" voxel), then deletion of P does not change the topology of S. 
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1-7271, and of the second author's research by the Office of Naval Research under Grant N00014-95-1-0521, 
is gratefully acknowledged, as is the help of Janice Perrone in preparing this paper. 



1 Introduction 

Classical digital geometry deals with sets of cubical voxels (or square pixels) that can share 
faces, edges, or vertices. Some authors [1] have studied digital geometry on other regular 
grids (in 2D: hexagonal or triangular), and other authors have generalized digital geometry 
to various types of abstract discrete spaces. 

In this paper we show that basic parts of digital geometry can be generalized to sets S of 
convex voxels (or pixels) that can have arbitrary intersections. In particular, we show that 
if each voxel P of S has only finitely many neightbors (voxels of S that intersect P), and 
if any nonempty intersection of neighbors of P intersects P, then the neighborhood N(P) 
of every voxel is simply connected, and if the topology of N(P) does not change when P is 
deleted (i.e., if P is a "simple" voxel), then deletion of P does not change the topology of 
S. [In early work on digital convexity, Sklansky [2] considered tessellations of the plane into 
convex tiles, but he did not allow the tiles to overlap or to have gaps between them.] 

The approach used in this paper originated in an earlier paper by the authors [3] which 
studied sets of (not necessarily regular) tetrahedra whose pairwise intersections have empty 
interiors. In that paper it was shown that the neighborhood of any tetrahedron (the union of 
the tetrahedra that intersect it) is simply connected if the tetrahedra satisfy a property called 
strong normality: For all T, Tu ..., Tn(n > 1), if each T{ intersects T and I = TiD- • -r\Tn ^ 0, 
then / intersects T. In [4] the authors showed that this result is also true for sets of convex 
polygons or polyhedra, and that the converse is also true: simple connectedness of the 
neighborhood implies strong normality. It was suggested to the authors by an anonymous 
referee of [2] that these results might actually be true in a very general setting, involving sets 
of arbitrary simply-connected sets whose pairwise intersections are simply connected. This 
suggestion is in fact too general; in Section 5 we will show by example that it is false if the 
sets are not convex. On the other hand, as we will show in Sections 2 and 3, the results are 
true for sets of convex sets. (Note that an intersection of convex sets is convex, and hence 
simply connected.) In Section 4 we will show that when the strong normality property holds, 
it is easy to identify a "simple" voxel (= a voxel whose deletion does not change the topology 
of its neighborhood), and the deletion of a simple voxel does not change the topology of the 
set S of voxels. 

2 Strongly normal sets of tiles 

Let V be a set of closed, bounded convex sets in Pt3; the elements of V will be called tiles* 
and the union of all the elements of V will be denoted by U(V). V will be called normal 
(or "locally finite") if, for any P G V, the number of tiles that intersect P is finite. V will 
be called strongly normal (SN) if for all P, Pi, P2, • • •, Pn{n > 1) £ V, if each Pi intersects P 
and I = Pi Pi P2 n • • • n Pn is nonempty, then / intersects P. It is not difficult to see that 
both normality and strong normality are hereditary: If they hold for V, they hold for every 
V cv. 

"The "tiles" correspond to voxels (or in R2 (see Section 5), to pixels); note that tiles can have arbitrary 
intersections. The definitions in this and the next paragraph all generalize immediately to any Rm; but the 
theorems in this and the next section are proved only for R3 (and R2). 
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The neighborhood of P in V, denoted by N-p(P), is the union of all Q € V that intersect 
P (including P itself). The interior of P, denoted by interior(P), is the largest open set ■ 
contained in P; the border of P is the set P - interior(P). From now on we will assume that 
V is normal. In this and the next section we will show that a normal set of tiles V is SN iff, 
for every P' C V and every P G V, NV>(P) is simply connected; thus SN is equivalent to 

hereditary "local simple connectedness". 

A plane TT will be called a supporting plane (or plane of support) of P if irDP is nonempty, 
and P is contained in one of the closed halfspaces bounded by TT. (Note that if P is contained 
in a plane, it is contained in both halfspaces bounded by that plane.) Such a halfspace is 
called a supporting halfspace of P. It is well known that a closed, bounded convex set is the 
intersection of all its supporting halfspaces. 

Theorem 1 If V is SN, then for any V C V the neighborhood NT>(P) of any P G V 
cannot have a cavity (i.e., the complement of N-pi(P) is connected.) 

Proof: Suppose N-pi(P) had a cavity K; since K is a component of the complement of the 
closed set NV>(P), K is an open set. Also, since the neighbors Q of P (including P itself) 
surround K, every point on the border of K (the set K - K, where K is the closure of K) 

must be in one of the Q's. 

Since P is the intersection of all the supporting halfspaces of P, K cannot be contained 
in all of these halfspaces. Let IT be a supporting plane of P such that P is contained in (at 
least) one of the halfspaces bounded by -K and K intersects (at least) the other halfspace. 
Translate IT parallel to itself, away from P, until it no longer intersects K. (Since K is 
surrounded by P and its neighbors, which are bounded, K must be bounded.) Let TT' be the 
position of TT just when this happens; thus TT' contains at least one point p such that any 
neighborhood of p intersects K. Thus p is on the border of K, so that it lies in some set of 
neighbors of P. 

Suppose first that p is only in one neighbor Q of P. Then there must exist a neighborhood 
n(p) of p in TT' (an open disk) that meets no other Q'. Thus any point p' on or near n(p), in 
the halfspace H' bounded by TT' that does not contain P, is in Q; and any point near n(p) 
in the opposite halfspace H is in K. If there were a point q' of Q anywhere in H, some line 
segment p'q' would thus intersect K, contradicting the convexity of Q. Hence Q lies entirely 
in H'; but this is impossible since Q is a neighbor of P. 

In general, let p be on the borders of the neighbors Qi of P. Since K is open, and 
p is on its border, the Q,-'s cannot fill all of H in the vicinity of p. Hence there exists a 
nondegenerate solid angular sector s, emanating from p into H, that is contained in K in 
some neighborhood of p. Since s and Qi are convex and their interiors are disjoint, there 
exists a supporting plane 7T; of Qi through p such that Qi and s are in different halfspaces 
of 7T;. Let Hi be the halfspace bounded by 71%- that contains Qi and let H- be the halfspace 
bounded by 7T; that contains s. Since there are only finitely many Q^s, the intersection of 
all the iJ-'s forms a polyhedral angular sector t, containing s, that emanates from p into 
H and whose interior is contained in K and does not intersect any of the Q^s. Let t' be 
the polyhedral angular sector constructed by continuing the faces of t through p into H'. 
Obviouly, t' is the intersection of the i^'s; thus t' contains the intersection / of the Q^s. 



Since interior(t) is contained in K, t is contained in H; hence t' (and thus /) is contained 
in H'. Hence / cannot intersect P, which is contained in H; this contradicts SN. □ 

Theorem 2 If V is SN, then for any V C V the neighborhood NT>{P) of any P e V 
cannot have a tunnel. 

Proof: Suppose N-p'(P) had a tunnel; then there exists a closed curve in Npi(P) that cannot 
be reduced to a point. Any curve in N-pi(P) can be decomposed into nondegenerate (closed) 
arcs such that the interior of each arc is contained in one of the tiles of Npi(P). Let C be 
such a curve that has a decomposition into as few such arcs as possible, say C\,..., Cm. If 
m = 2, C is contained in the union of two tiles of N-pi(P), and the intersection of these tiles 
is nonempty (it contains the common endpoints of the arcs); but since the tiles are convex, 
the union of two intersecting tiles is evidently simply connected, so C can be deformed to a 
point, contradiction. For each i, let Qi be a tile that contains C,-; by the minimality of m, 
successive Q^s must be distinct. Let C leave Qi and enter Q;+i (modulo ra) at pt-, which 
is a point of Qi n Qi+i- Since Qi is convex, the arc C; from pi-i to pi can be deformed 
into the line segment Pi-iPi, which lies in Qi. Suppose Q,-_i, Qi,Qi+i had a common point 
p. Then we could continuously deform C by moving pi-\ in Qi-\ fl Qi and pi in Qi D Qi+i 
until they both coincide with p; this reduces pi-iPi to the single point p, so that C; is now 
a degenerate arc, contradicting the minimality of ra. Hence any three successive Q's must 
be disjoint. Since V is SN, Q,_i fl Qi and Qi f) Qi+i must both intersect P; hence we can 
continuously deform C by moving p,_i in Qi-\ fl Qi and pi in Qi fl Qi+i until they both 
reach P. The line segment Pi-iPi then lies in P, so we can replace Qi by P. As just shown, 
Qi = P, Qi+i, and Qi+2 must be disjoint; but this implies that Q,+i fl Qi+2 must be disjoint 
from P, contradicting SN. d 

Theorems 1 and 2 immediately imply 

Theorem 3 If V is SN, then for any V C V the neighborhood NV>{P) of any P e V is 
simply connected.. D 

3    The converse 

In this section we prove that the converse of Theorem 3 is also true: if, for any normal 
V QV and any P <E V\ NV,(P) is simply connected, then V is SN. 

Lemma 1 Let P be a tile in a normal set of tiles V. If Qi,Q2,~ " ,Qn is a minimal set of 
neighbors of P in V that violates SN, then n is either 2 or 3. 

Proof. Evidently a single neighbor cannot violate SN, so we need only show that for 
n > 3, Qi, Qi, • ■ •, Qn cannot be a minimal set of neighbors of P that violates SN. Suppose 
Qi, Q21 • • • 5 Qn, where n > 3, were such a minimal set of neighbors. Then the intersection of 
the Qi's would be nonempty and disjoint from P. Let p be a point in the intersection of the 
Qi's. Since Qi, Q2, ■ ■ ■, Qn is minimal, for every 1 < i < n, P 0 (flj^i Qj) must be nonempty. 
Let pi be a point in P fl (flj^i Qj)- This gives us n points pi,£>2, • • ■ ,Pn such that every Qi 



contains all of the pj's except pi, and hence contains the convex hull Hi of all the pj's except 
pi; and P contains the convex hull H of all n p^s. 

Let 7T be a plane that does not contain p and that intersects every line ppi, say at g,-; and 
let Xi be the convex hull of all the g/s except ?,-. We shall now show that Hi-X» cannot be 
nonempty. Evidently, each X{ is the projection of Hi (through p) on ir. Hence if there were 
a point x in every Xi, the line px would intersect every Hi. Let /i; be the first point at which 
px meets Hi. All the h^s must be on the same side of p, since otherwise p would be in the 
convex set H, which is contained in P, contradicting the fact that p is in the intersection of 
the Q's, which is disjoint from P. Let h be the hi that is closest to p. Each Qi is a convex 
set that contains p and all the pj's except p,-; hence it contains p and #;, hence contains the 
line segment phi. Thus every Qi contains h. But h is in # C P; thus P n Qi H • • • D Qn is 
nonempty, contradicting the assumption that the Q's violate SN. 

If n > 3, we can choose four g's that form a (possibly degenerate) quadrilateral qxq2q3qi 
in 7T such that each X{ contains at least one of the four (possibly degenerate) triangles qxq2q3, 
?2<?3<74, <7i<72<?4, and qiq^q^. But the intersection of the four triangles is the intersection of the 
diagonals of the quadrilateral, so is always nonempty; hence f|,- Xj is nonempty, contradiction. 
D 

If k = 2, P n Qi and P n Q2 must be disjoint. If fc = 3, P n Qx n Q2, P fl Q2 n Q3, and 
P Pi Qz D Qi must be nonempty and disjoint. 

Theorem 4 Let V be such that, for any normal V C V and any P G V, NV>(P) is simply 
connected; then V is SN. 

Proof: Suppose V is not SN. By the Lemma, a minimal set of Q's that violate SN has either 
two or three elements. 

Suppose first that it has two elements Q\,Qi\ let V = {P,Qi,Q2}- Let C be a closed 
curve in Np>(P) = P U Q\ U Q2 that passes through each of the intersections P D Qi, P C\ Q2 

and Qi C\ Q2. Suppose we could deform C so that it leaves any of the three tiles, say Q\. 
Before C leaves Qi it has an arc from a point of P n Q\ to a point of Qi f] Q2, passing 
through Qi. Hence just after C leaves Q\ it must have points arbitrarily close to P (~l Q\ 
and Q\ PI Q2. Since P n Q\ is disjoint from Q2, the end of the arc that was previously in 
P n Qi cannot be in Q2; hence it must be in P. Similarly, since Qi D Q2 is disjoint from P, 
the end that was previously close to Qi D Q2 cannot be in P; hence it must be in Q2. Since 
the arc no longer lies in <3i, to get from the endpoint in P to the endpoint in Q2 it must 
pass through P D Q2. Just after the arc leaves Qi, it must be arbitrarily close to Qi] hence 
it cannot pass through P D Q2, which is disjoint from Q\. Thus the curve cannot leave Qi, 
and similarly it cannot leave Q2 or P, so it cannot be reduced to a point,which proves that 
Npi(P) = P U Q\ U Q2 is not simply connected. 

Next, suppose that a minimal set of Q's that violates SN has three elements Qi, Q2, $3- 
Let V = {P,Qi,Q2,Q3}\ since the <2's violate SN, their intersection must be nonempty; 
and P PI Qi n Q2, P n Q2 n Q3, and P D Q3 n Qx must also be nonempty. Let p, p3, px and 
p2 be points in Qx D Q2 D Q3, P n Qi D Q2, P n Q2 n Qs, and PnQ3n Qi, respectively, 
such that the volume of the tetrahedron T defined by the four points p, p3, px and p2 is 
minimum. Then interior(T) cannot intersect any of Qx H Q2 H Q3, P D Qi H Q2, P H Q2 H Q31 



or P H Qz H Q\. Note that p, p1; p2 are all in Q3; p, P2, Pz are all in Qi; p, p3, pi are all 
in Q2] and pi, p2, pz are all in P. Thus each of P, Qi, Q2, Qz contains a face of T. On 
the other hand, since the Q's violate SN, p is not in P, pi is not in Qi, P2 is not in Q2, 
and p3 is not in Qz, so that none of P, <5i, Q2, Qz contains T. This also implies that T is 
nondegenerate. [Indeed, if its vertices were coplanar (or collinear), the intersection of the 
triangles (possibly degenerate) would contain the (nonempty) intersection of the diagonals 
of the quadrilateral (possibly degenerate) PP1P2P3', but this implies that P D Q\ D Q2 D Qz 
is nonempty, contradiction.] Now the interior of T is surrounded by the faces of T; hence 
it is surrounded by P U Q\ U Q2 U Qz(= Npi(P)). If we can show that the interior of T is 
not contained in P U Qi U Q2 fl Q3, it will follow that Npi(P) has a cavity, and hence is not 
simply connected. 

As we have just seen, none of the tiles P, Qi, Q2 Q3 can contain (the interior of) T. 
Thus if the intersection of no two of them intersects the interior, we are done. Let Qi f] Q2 

intersect interior{T)\ since Qi fl Q2 cannot contain the entire interior of T (otherwise, each 
of Qi and Q2 would contain it), interior(T) must intersect the border of Q\ fl Q2. Let £ be a 
point in border(Qi C\ Q2) f) interior(T) such that the area of the triangle xp\p2 is minimum. 
Since P, Qi; Q2 and Q3 are all closed and no three of them intersect interior(T), there must 
exist some neighborhood n(x) of x in the triangle xp\p2 such that neither P nor Qz intersects 
n(x). Therefore one of the following three cases must occur: (1) n(x) is entirely contained 
in Q-i] (2) n(x) is entirely contained in Q2\ (3) n(x) intersects Q\ fl Q2. If (3) occurs, let y 
be a point in n(x) and in Q\ fl Q2. Obviously the area of triangle ypip2 is less than that 
of xpip2; but this contradicts the assumption that xpip2 has minimum area. If (1) occurs, 
the interior of xp2 must intersect Q\ fl Q2, which leads to the same contradiction as (3); and 
if (2) occurs, we reach the same contradiction in the same way. Therefore the union of P, 
Qi, Q2 and Qz fails to occupy the entire interior of T. This proves that N-pi(P) contains a 
cavity, so that it is not simply connected. D 

4    Simple tiles 

A tile P is called simple in V if deleting P from V does not change the topology of N-p(P). 
Define Nj,(P), the excluded neighborhood of P in V, as the union of all Q 6 V, excluding 
P itself, that intersect P; thus NV(P) = N$(P) U P, and P is simple in V iff NP(P) and 
Nj,(P) are topologically equivalent. Define Nj,(P), the shared subset of P in V, as the set 
7V£(P)nP. 

Theorem 5 IfV is SN, then for any V C V, P € V is simple in V iff Nf>,(P) is simply 
connected. 

Proof: By Theorem 3, N-p'(P) is simply connected; and it contains the simply connected 
subset P. Hence [5] there exists a topology-preserving transformation r (a deformation 
retract) that takes NV>(P) into P. (Note that this eliminates all the tiles of N-p'(P) except 
P.) Since r removes NV,(P) - P from NTI(P), it takes the subset N£,(P) of NV,(P) into 
N},(P) - (NV,(P) - P) = N},(P) DP = Nj,,(P). N$,,(P) and Nj,,(P) must thus be 
topologically equivalent; hence P is simple iff Nj,,(P) is topologically equivalent to N-pi(P) 
(i.e., simply connected) iff Np,(P) is simply connected. □ 



Theorem 6 IfV is SN, then for any V C V, if P € V is simple in V, the deletion of P 

from V does not change the topology ofU{V). 

Proof: By Theorem 5, Np,(P) is simply connected, and it is contained in the simply con- 
nected set P. Hence [5] there exists a topology-preserving transformation a (a deformation 
retract) that takes P into N$,,(P), which is a subset of N£,(P). Thus a deletes P from 
U(P'), and it is topology preserving. (Note that P may be contained in N^,{P) (hence equal 
to JV£,(P)), in which case a is the identity mapping, and "deletion" of P actually leaves 

U(P') unchanged.) D 

When V is SN (so that N-p(P) is simply connected), the local topological changes when 
P is deleted depend on the numbers of components, tunnels and cavities in N£(P). In [6] we 
gave efficient methods of identifying simple tiles, and measuring the local topological changes 
when a non-simple tile is deleted, in the case where the tiles are polyhedral (or polygonal, 
in 2D). Unfortunately, this does not seem to be possible for general convex tiles. 

If V is not SN, the topology of U(V) may change when a tile P is deleted from V even if 
P is simple. An example is shown in Figure 1, where P is simple (both N-p(P) and N£(P) 
have one component, one tunnel, and no cavities; note that tile R is not in N-p(P)), but the 
topology oiU{V) changes when P is deleted (prior to deleting P, U(V) has one component, 
one tunnel, and no cavities; after deleting P, U(V) has one component but no tunnels or 

cavities). 

Figure 1:  If V is not SN, the topology of U(V) may change even when a simple tile P is 
deleted. (Note that in this example, one of the tiles is a triangular prism, not a cube.) 

5    Concluding remarks 

The theorems in this paper also hold in R2; in this case a tile is the intersection of all its 
supporting halfplanes (= closed halfplanes bounded by supporting lines, where a supporting 
line of P is a line / such that I D P ^ 0, and P is contained in one of the closed halfplanes 
bounded by /), and the proofs of the theorems must be reworded appropriately. Note that 
in P2, Theorems 1 and 2 reduce to the same statement: If V is SN, then for any V C V 
and any P G V, N-pi(P) cannot have a hole. 

Convexity of the P's seems to be essential to obtaining the main results in this paper; 
it is not sufficient for the P's and their pairwise intersections to be simply connected. For 



example, let P be a closed cube and let Qi, Q2 be halves of a hollow closed hemisphere 
(divided by a vertical plane) sitting on top of P. Thus P, Qi, Qi and their pairwise intersec- 
tions are all nonempty and simply connected. Also, Q\, Q2 and Qi H Q2 all intersect P, so 
that {P, Qi,Q2} is SN. But PUQ1UQ2 has a cavity, so that Theorem 1 does not hold. 
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